
Self-Organizing and Parallel-Process Driven Fast Generation of
Adversarial Examples for 3D Point Clouds

ABSTRACT
As an emerging threat to point cloud deep learnings, adversarial
example attacks have received increasing attentions since they can
easily fool the target systems and then lead to serious damages.
Different to conventional time- and resource-consuming methods,
in this paper we propose a new data-driven method to fast generate
adversarial examples on 3D point cloud deep learnings. Based on
self-organizing map, we first design a global feature extraction
network to process point cloud input with group coding, which
can help to speed up the coding process and reduce the resource
usage. We then use a dual-process point cloud restoration network
to generate point clouds with adversarial properties. Designed with
two parallel branches, the restoration network can quickly obtain
effective adversarial examples under the premise of low resource
usage. Benchmark-based experiments are conducted to evaluate
the efficiency of our method. Specifically, we can achieve up to
511% faster with only 34.19% GPU resource usage comparing with
existing methods. In addition, our method increases up to 12% in the
success rate of attacking unseen networks (transferability) and 9.8%
in the ability to break through point cloud networks with defensive
policies.

KEYWORDS
Deep Neural Networks, 3D Point Clouds, Adversarial Examples

1 INTRODUCTION
Deep Neural Networks (DNNs) have achieved impressive success
in perception tasks in the fields of autonomous driving, robotics,
and virtual reality. However, it has been found that DNNs are vul-
nerable to adversarial attacks, which can produce imperceptible
disturbances to the input and lead the target system to misbehave.
This type of research has made significant progress on 2D images
[8, 14, 19, 20], and a plethora of works have proved the effectiveness
of adversarial example attacks on 2D images [3]. With the combi-
nation of deep learnings and 3D sensors like lidar [2, 12, 18, 21, 22],
point cloud DNNs are increasingly utilized in a variety of safety-
critical applications [1, 13], such as unmanned driving and security
monitoring, etc. Unfortunately, point cloud DNNs are also seriously
threatened by adversarial example attacks, which will definitely in-
crease the risk in safety-critical scenarios, leading to serious safety
accidents.

Recently, there are certain studies on adversarial example attacks
on point cloud deep learnings. The first method is to obtain ad-
versarial examples by adding adversarial points or perturbing key
points [18]. After that, in order to make the adversarial examples
exemplified as real objects, K-Nearest Neighbor (KNN) loss lever-
aged to smooth the generated point cloud adversarial examples, so
that the attack is physically achievable[12]. In addition, AdvPC is
proposed to evaluate the feasibility to generate adversarial exam-
ples by focusing on the transferability of point clouds [2]. Although

the above-mentioned methods have good results, the generation
process is very slow and consumes a lot of hardware resources.

In contrast, we propose a fast generation of adversarial examples
for 3D Point Clouds (FADPC). FADPC can generate adversarial
examples quickly and efficiently. Our method mainly consists of a
Self-OrganizingMap (SOM) based global feature extraction network
and a dual-process based point cloud restoration network. The
global feature extraction network uses SOM to group the original
point clouds, and then group to extract global features and merge
them to achieve the purpose of quickly and effectively encoding
the point clouds into global features. The dual-process based point
cloud restoration network uses the convolution branch and the
MLP branch to obtain the point clouds respectively, and then merge
them to obtain the final adversarial examples. Doing so can quickly
restore the global features of the point cloud to a 3D point cloud.
The adversarial loss is added in the restoration process, so that
the restored 3D point cloud can fool the classifier. Our method
seldom depends on the victim network and can be better generalized
to different networks. In summary, this paper has the following
contributions:

• We design a global feature extraction network. The method
based on SOM grouping extraction can increase the speed
of point cloud global feature extraction and reduce resource
consumption.

• We design a dual-process based point cloud restoration net-
work, including a process supported by a small-scale fully
connected structure and a process with a convolution mod-
ule as the backbone. This method effectively improves the
restoration speed of the point cloud and reduces the resource
usage.

• Benchmark-based experiments on existing methods are con-
ducted to evaluate the superiority of our method, which can
achieve up to 511% faster speed with 65.81% lower resource
usage while ensuring the success rates of attacks. Moreover,
our method can obtain better performance in the aspects of
transferability and breaking through on defensive methods.

2 RELATEDWORK
2.1 Deep Learning on Point Clouds
PointNet [9] is the first DNN work that directly uses 3D point cloud
data. It uses max pooling to aggregate the features of each point
into a global descriptor vector. PointNet’s order of the input points
is unchanged, because the feature extraction of each point is same,
and the maximum pooling operation is the same. PointNet++ [10]
is an upgrade of PointNet, which divides points into several groups
of different levels so that features from multiple 3D scales can be
extracted hierarchically. The closest approach is to run convolution
among the neighbors of a point, instead of using a point-by-point
operation [4, 5, 7, 11, 15]. In contrast to PointNet and its variants,
these works are more focused on the extraction of local features to

SO
M

 based
G

lobal Feature
Extraction

D
ua

l-p
ro

ce
ss

ba

se
d

po
in

t c
lo

d
re

st
or

at
io

n

Target

Model

Attack Loss

Error

Result

Global

Feature

PN

s
x

12
80

SOM
Feature Map

s
x

25
6

SO
M

Global

Feature

Max
Pooling

MLP

Fusion

PN

PN

PN

PointCloud
Input

Geometr

Loss

DeconvGroup

（a）

（c）（b）

PointCloud

adversarial examples

Figure 1: Design Framework of FADPC

achieve recognition results. In this paper, we choose three point-
by-point processing networks, i.e., PointNet, PointNet++ single-
scale (SSG), PointNet++ multi-scale (MSG) and Dynamic Graph
Convolutional Networks (DGCNN) [16], to verify the feasibility
and performance of our method. We will study the effectiveness of
our method on these three networks, the transferability between
the three networks, and the speed and resource consumption of our
method to generate adversarial examples with these three networks
as the target networks.

2.2 Adversarial Attacks on Point Clouds
The first method was proposed by Xiang et al [18], which deployed
two attack methods: perturbating against key points and adding
perturbation points. Unfortunately, these methods are easy to be
defended by simple statistical methods, and basically do not have
transferability over other networks. Cai et al. proposed to add KNN
loss to the generated points [12] to make the point cloud generated
by this point cloud attack method smoother, so that the generated
point cloud can be restored to real space or even be 3D printed.
Recently, Abdullah et al. proposed the AdvPC [2] which generates a
point cloud disturbance by adding a transferability loss during the
autoencoder training process, and then it adds the point cloud dis-
turbance to the original point cloud to obtain a highly transferable
adversarial examples. In contrast, our method is to directly generate
point cloud adversarial examples without adding any perturbations.

2.3 Defenses Against Point Cloud Attacks
Zhou et al. proposed a method based on Statistical Outlier Removal
(SOR) to defend against point cloud adversarial example attacks.
SOR uses KNN to identify and remove abnormal points in the point
cloud to achieve defense effect. Zhou et al. also proposed DUP-
Net [24], which combines SOR with the point cloud up-sampling
network PU-Net [23] to further strengthen the defense performance.
They also proposed to remove unnatural points through Simple

Random Sampling (SRS), where each point has the same probability
of being randomly removed to achieve the purpose of defense.
Moreover, Xiang et al. [18] also proposed adversarial training on
the attacked point cloud as a defense mode.

3 APPROACH
The design framework of FADPC is demonstrated in Figure 1. The
point cloud samples are trained by FADPC to generate adversarial
examples for 3D point clouds, which can help to reduce the de-
pendence of the attack on the target network. In this section, we
first introduce the self-organizing input process. Then we show
the main sub-networks of our model: SOM based global feature
extraction network and dual-process based point cloud restoration
network. Finally the training loss design is presented.

3.1 Self-Organizing Input Preprocessing
Our work leverages SOM to assist in point cloud grouping. SOM
can generate a low-dimensional discrete map by learning the data
in the input space[6]. We construct an initial SOM with 𝑠 nodes.
The training method of SOM is different from general neural net-
work training based on the reverse transfer of loss function. It uses
a competitive learning strategy, relying on neurons to compete
with each other gradually. And a neighborhood function is used to
maintain the topological structure of the input space. Because the
input of point cloud is normalized within [-1, 1], we distribute the
initial nodes of the SOM uniformly in a unit sphere with a radius
of 1. Since the point cloud is unordered as input, in order to make
the SOM training results of the same point cloud consistent, we
perform a unified SOM updated after calculating the influence of all
points. This batch calculation method can make the arrangement
unchanged. We use this method to quickly generate the correspond-
ing SOM for each 3D point cloud model. An illustrative example of
SOM initial state and the training result is shown in Figure 2 (b).

F

Figure 2: (a): Initial state of SOM. (b): Training result of SOM.

3.2 SOM based Global Feature Extraction
Our SOM based global feature extraction network has two inputs:
the original point cloud and its corresponding SOM. As shown in
the group operation in Figure 1(b), SOM is the index of the sample
point cloud. As shown in Eq. 1, we take each point𝑚 𝑗 on the SOM as
the starting point to sequentially perform Farthest Point Sampling
(FPS) on the point cloud 𝑝𝑖 , and divide the point cloud into 𝑠 groups,
each with 𝑛 points.

𝑝𝑖 𝑗 = 𝐹𝑃𝑆
(
𝑝𝑖 |𝑚 𝑗 , 𝑗 = 0, 1, . . . , 𝑠 − 1

)
(1)

It can be seen from the grouping results in the Figure 1(b) that
the sampling distribution of each group is very uniform and can
well cover the sampling space. Then we normalize each point 𝑝𝑖 𝑗
by its associated node𝑚𝑖 , shown as follows:

𝑝𝑖 𝑗 =𝑚 𝑗 − 𝑝𝑖 𝑗 (2)
As shown in Figure 1(b), after the point cloud is grouped and

normalized, the points are sent to the PointNet (PN) coding module
for feature extraction. The PN module is composed of a fully con-
nected layer 𝑙 and a maximum pooling layer. Among them,𝜓 is a
nonlinear activation function, and the output of the fully connected
layer in PN is shown in Eq. 3.

𝑝𝑙+1𝑖 𝑗 = 𝜓

(
𝑉 𝑙𝑝𝑙𝑖 𝑗 + 𝑏

𝑙
)

(3)

We perform the maximum pooling operation on the single point
features obtained by the fully connected layer, aggregate the fea-
tures on the SOM node corresponding to each subgraph, and obtain
each node feature, which is shown in Eq. 4. All the node features
together form a node feature graph.

𝑚0
𝑗 = max

(
𝑝𝑖 𝑗 , 𝑖 = 0, 1, . . . , 𝑛 − 1

)
(4)

We send the node feature map to the PN module to get the global
feature. The global features are spliced with the node feature map
to obtain the SOM feature map of the point cloud, which is further
used to represent the input point cloud. Finally, the SOM feature
map is pooled to the maximum and aggregated to obtain the global
feature.

The point cloud passes through one SOM and two batches of
PN modules before getting the final global features. Because the
process of obtaining the point cloud SOM and the search process of
FPS are determined and the PN module is also constant, so we can

guarantee the node characteristics and the global all features are
permutation invariance. Because SOM can well reveal the spatial
distribution of point clouds, the SOM node is used as the starting
point of the FPS algorithm. We use it to sample from the original
point cloud, and each set of mini point clouds obtained can well
represent the global characteristics.

Compared with only using the PN module for global feature
extraction, SOM group extraction does not need to abstract the
dimensions of all points to a very high dimension. It only needs to
group all points to a SOM node, and then aggregate the SOM node
features to a high dimension. Therefore, the use of SOM speeds up
the extraction of global features and reduces resource occupation.
The global features are obtained from the maximum pooling of the
SOM feature map, which is composed of global features and the
SOMnode feature splicing. The SOMnode features can complement
each other to make the global information more detailed. The global
feature is obtained by maximum pooling after stitching the node
feature map and the global feature, which can also improve the
effect of subsequent point cloud restoration.

3.3 Dual-Process based Point Cloud Restoration
We design a point cloud restoration network that can recover the
input point cloud from the global characteristics of the point cloud.
In the past, the most commonly used method is to connect a series
of fully connected layers after inputting the global features, and
finally generate a 3-dimension vector of length 𝑁 . However, if there
are enough points generated (𝑁 is large enough), the parameters of
the model will become very large. Therefore, the model operation
will take up a lot of resources, and the point cloud generation speed
will be very slow.

As shown in Figure 1(c), the restoration network is designed
with two parallel branches, namely MLP branch and convolutional
branch. The MLP branch is composed of fully connected layers. The
MLP branch continues to abstract the global features of the point
cloud restoration network input to a higher dimension, and then
reshape it into an 𝑁 × 3 style output. Each point output by the fully
connected layer is independently predicted and has a high degree
of flexibility. Due to a large number of parameters, the training
speed is too slow and it is not suitable for all points to be generated
by the fully connected layer.

Refering to many point cloud generation and depth estimation
methods, we construct a special convolution branch. Our convolu-
tion branch consists of the deconv module, which has two design
parts: interpolation and convolution layers. First, interpolation is
used to transfer the rough features of the previous layer, and then
the output result is obtained through a 3 × 3 convolutional layer.
The convolutional space has continuity, so the point cloud part
generated by the convolution branch has better geometric con-
sistency. Moreover, the convolution branch parameters are less
and the training speed is faster. The two branch generation results
together constitute the final adversarial examples.

3.4 Hybrid Loss
To achieve high-level reconstruction accuracy and attack success
rate, we use a hybrid loss composed of attack loss and geometry
loss.

Figure 3: Examples of adversarial examples generated by
FADPC. The black point cloud is the original point cloud,
and the blue point cloud is the adversarial example. The
red label is the misclassification result of the adversarial
examples under the target network.

3.4.1 Attack Loss. The adversarial examples generated by our
method are to make the target network misclassify. Inspired by
the method from 2D adversarial examples, we design an adversarial
loss. The first part of the loss is to reduce the target model’s con-
fidence in the true label. We use the estimated probability of the
model as the direct loss of the attack. As expressed in Eq. 5, 𝑘 is the
type of sample, 𝑔 is the coding value of the target model, and 𝑔 is
the predicted probability of the target model.

𝐿1 =
∑︁
𝑘

𝑔𝑘𝑔𝑘 (5)

The second part of the loss is the misleading target model, which
is expressed in Eq. 6. We choose the error category with the highest
confidence of the target model for the current generated sample as
the explicit direction of overall optimization.

𝐿2 = 1 −max
𝑘

(1 − 𝑔𝑘) 𝑔𝑘 (6)

3.4.2 Geometry Loss. There are many ways to express the struc-
tural differences between two point clouds. We use structure loss
consisting of 𝐿2 distance, chamfer distance, and hausdoff distance
to make up for its shortcomings. Given two point set 𝑋 and 𝑌 , 𝐿2
distance, chamfer distance , and hausdoff distance can be expressed
as:

𝐷𝐿2 =

𝑋∑︁
𝑖=1

∥𝑋𝑖 − 𝑌𝑖 ∥22 (7)

𝐷𝑐ℎ𝑎𝑚𝑓 𝑒𝑟 (𝑋,𝑌) =
1
|𝑋 |

∑︁
𝑥 ∈𝑋

min
𝑦∈𝑌

∥𝑥 − 𝑦∥22

+ 1
|𝑌 |

∑︁
𝑥 ∈𝑌

min
𝑦∈𝑋

∥𝑦 − 𝑥 ∥22
(8)

𝐷ℎ𝑎𝑢𝑠𝑑𝑜𝑟 𝑓 𝑓 (𝑋,𝑌) = max
𝑥 ∈𝑋

min
𝑦∈𝑌

∥𝑥 − 𝑦∥22 (9)

𝐿2 distance only calculates the distance between pairs of points,
so the calculation speed is very fast. But because it lacks the in-
formation of points to surrounding points, treating this loss as the
only loss will lead to the entire network training abnormal. So we
add chamfer distance and hausdoff distance. The hausdoff distance
traverses the entire point set to find the closest point in the original
point cloud for the points in the counterpoint cloud, and outputs
the maximum squared distance of these point pairs. chamfer dis-
tance is a measurement method similar to hausdoff distance. The
difference is that chamfer distance takes the average of all near-
est pairs, while Hausdor distance takes the maximum value. The
chamfer and Hausdor distance are not directly calculated on the
distance between point pairs but based on two complete point sets,
so the original shape of the point cloud can be preserved as much
as possible. Figure 3 shows four instances of adversarial examples
generated by our method.

4 EXPERIMENT
In this paper, we use ModelNet40 [17] , a widely used 3D point
cloud dataset, to test effectiveness of the proposed adversarial exam-
ples generation method. The ModelNet40 data set contains 12,311
CAD models in 40 different categories. 9,843 objects were used for
training, and another 2,468 were used for testing. We uniformly
sample 10,000 points from the surface of each object and normalize
them to a unit sphere. The sample distribution of the ModelNet40
data set is very uneven. We select 10 classes with the most sam-
ples from 40 classes, and randomly select 50 examples from each
class sample to generate point cloud adversarial examples, so we
have 500 samples used in our experiments. We use PointNet [9],
PointNet++ in single-scale (SSG) and multi-scale (MSG) [10], and
DGCNN [16] as the target classification network, and use the de-
fault settings to train the model. We compare FADPC against the
state-of-the-art baselines AdvPC[2], 3D-Adv [18] and KNN Attack
[12]. In our experiments, all attacks were untargeted attacks. We
use chamfer distance as a metric to generate standard attacks and
have measure the success rate of attacks under the budgets of cham-
fer distance=0.10. This threshold is chosen because it enables the
attack to achieve a 100% success rate on the target network and the
possibility of transferring to other networks. Under this threshold,
the high similarity between the generated adversarial examples and
the original can also be guaranteed.

All experiments are implemented using PyTorch on NVIDIA
RTX2080Ti. In most experiments, we use SOM with 81 nodes. We
use Adam to optimize the network, where the batchsize is set to
10 and the point cloud is downsampled to 2048 points as input.
Batch-normalization and ReLU activation are applied to every layer.
The performances of FADPC are evaluated in three aspects, i.e.,
attack performance and transferability, the ability to break through
defensive methods, and the speed of adversarial example genera-
tion.

4.1 Attack Transferability
To evaluate the transferability, we use the percentage of adversarial
examples misclassified by the target network as an attack perfor-
mance indicator. We optimize the adversarial examples for each
target network, and take them as the input of other DNNs to test

Table 1: Comparison of attack success rate on target networks and unseen networks.

Target
Model PointNet PointNet++

(MSG)
PointNet++

(SSG) DGCNN

Attack 3D-Adv KNN AdvPC FADPC 3D-Adv KNN AdvPC FADPC 3D-Adv KNN AdvPC FADPC 3D-Adv KNN AdvPC FADPC
PointNet 100 100 98.0 100 6.8 7.2 13.2 15.7 6.8 6.8 10.8 12.8 10.8 7.2 20.8 31.2

PointNet++
(MSG) 8.4 9.2 17.2 26.7 100 100 94.8 98.4 8.8 8.8 27.6 31.3 14.4 11.2 32.4 47.8

PointNet++
(SSG) 8.8 8.4 28.0 33.2 32.4 22.8 53.2 66.3 100 100 96.4 98.7 39.6 13.6 52.4 58.3

DGCNN 7.2 7.2 22.0 24.6 14.8 8.4 33.2 46.1 8.0 7.6 26.8 29.9 100 100 85.2 94.7

the success rate of attacks. In this experiment, no defensive strategy
is implemented in the original point cloud DNNs.

Table 1 shows the attack effect of FADPC and the baseline meth-
ods. First, the success rate of FADPC attacks is basically the same
as other existing methods. FADPC attacks on PointNet can guar-
antee a 100% success rate. The success rate of FADPC in attacking
PointNet++ and DGCNN is also close to 100%. In specific, the attack
rates of FADPC are 1.6% lower in attacking PointNet++ (MSG), 1.3%
lower in attacking PointNet++ (SSG) and 5.3% lower in attacking
DGCNN than 3D-Adv and KNN. This is because 3D-Adv and KNN
can utilize network parameters to generate adversarial examples,
while FADPC has no any knowledge of target network parameters.
Compared with AdvPC, which also does not need to read network
parameters, FADPC can have better performance in all situations.

Table 1 also shows the transferability of FADPC and the baseline
methods. First, FADPC consistently surpasses other baseline in
transferability, up to 15.4% better attack success rate. The average
transferability of FADPC, AdvPC, 3D-Adv and KNN are 35.3%, 24.9%,
11.5%, and 8.92%, respectively. Overall, FADPC is superior to other
methods in terms of transferability. When FADPC uses DGCNN as
the target network to generate adversarial examples, the average
transferability is 45.77%, the success rate is 28.17% when PointNet is
the target network, and the success rate is 42.7% when PointNet++
(MSG) is the target network. When PointNet++ (SSG) is used as
the target network, the success rate is 24.67%. In the transferability
experiments of FADPC, we found that the adversarial examples
generated by using DGCNN as the target network have the best
universality, and the overall performance of the attack success rate
is the highest.

4.2 Attack performance on defensive methods
In this section, we conduct the attack experiment on defensive
methods and choose widely used SOR, SRS, DUP-Net [24] and
confrontation training [18] methods. For evaluation, a drop rate
of 10% is set for SRS. The parameters proposed in the original text
are maintained in SOR. For DUP-Net, the ModelNet40 data set is
trained with an up-sampling rate of 2. In the adversarial attack, all
four networks are trained using a mixture of ModelNet40 training
data and the generated adversarial examples.

Experimental results of attack success rates on defensive meth-
ods are shown in Table 2. The average attack success rate of FADPC
on the four point cloud models with defense methods is 57.54%; the
success rate of 3D-Adv, KNN and AdvPC are 33.65%, 35.65% and
53%, respectively. FADPC is more effective against SRS, a relatively

Table 2: Comparison of success rate of breaking through
defense methods.

Model Defense 3D-Adv KNN AdvPC FADPC

PointNet

No defense 100 100 98.0 100
ADV-training 9.2 10.0 43.6 45.7

SOR 20.0 14.4 27.6 35.5
DUP Net 12.0 9.2 15.6 22.9

SRS 88.8 84.0 96.4 96.8

PointNet++
(MSG)

No defense 100 100 94.8 98.4
ADV-training 18.8 46.0 48.4 52.4

SOR 32.8 37.2 49.2 55.3
DUP Net 31.6 33.6 42.8 48.1

SRS 63.6 64.8 83.6 86.9

PointNet++
(SSG)

No defense 100 100 96.4 98.7
ADV-training 20.8 19.2 74.4 77.6

SOR 24.8 17.2 49.6 55.1
DUP Net 18.4 15.2 33.6 36.9

SRS 60.4 55.2 86.4 88.2

DGCNN

No defense 100 100 85.2 94.7
ADV-training 16.8 37.6 48.0 53.0

SOR 22.0 29.2 36.8 46.6
DUP Net 34.8 36.0 36.8 39.7

SRS 63.6 61.6 76.0 79.9

simple statistical defense method, with an average attack success
rate of 86.7%. It can be also found that DGCNN is the most difficult
network to attack for all attack methods. Our method is to directly
generate adversarial examples based on the original samples, thus
the point distribution is closer to the original point cloud sample
than other methods, which can help to escape from defense mod-
els. As a conclusion, the breakthrough defense performance of our
method is the best on these four networks.

4.3 Speed and Resource Comparison
In order to evaluate the generation speed and resource consumption
of our FADPC attackmethod, we test the speeds of FADPC and other
batch generation methods (3D-Adv, AdvPC) to generate adversarial
examples and the corresponding GPU resource consumptions. KNN
is a single generationmethod, which takes a lot of time and resource
occupancy, so no comparison is made. We ignore to use models
with defensive strategies in this experiment.

0

1

2

3

4

5

6

7

8

9

Ti
m

e
ov

er
he

ad
 (s

)

PointNet

 3D-Adv AdvPC FADPC

PointNet++
(MSG)

PointNet++
(SSG)

DGCNN

(a)

0

200

400

600

800

1000

G
PU

 m
em

or
y

us
ag

e
(M

iB
)

 3D-Adv AdvPC FADPC

PointNet PointNet++
(MSG)

PointNet++
(SSG)

DGCNN

(b)

Figure 4: (a): Comparison of time consumption. (b): Compar-
ison of GPU memory usage.

Figure 4(a) shows the generation time overheads of our method
and other two baseline methods. All candidates take four kinds of
networks as the target network to generate adversarial examples.
The average time overheads for FADPC, AdvPC and 3D-Adv are
1.35 s, 6.9 s and 7.8 s, respectively. The generation speed of our
method is 411% faster than that of AdvPC and 478% faster than that
of 3D-Adv. Figure 4(b) shows the GPU memory consumed by our
method, AdvPC and 3D-Adv. FADPC consumes 213 MiB GPU mem-
ory on average, AdvPC consumes 623 MiB, and 3D-Adv consumes
970 MiB. FADPC uses SOM to guide grouping, so that all points
do not need to be calculated multiple times when extracting global
features. This can speed up global feature extraction and reduce
resource consumption. FADPC deploys two generation branches
in its restoration network, which effectively avoids the shortcom-
ings of only using a fully-connected network, leading to low time
overhead and memory consumption. To sum up, the experimental
results evaluate that FADPC has the fastest generation speed and
the lowest resource occupation under the premise of ensuring the
generation of high-quality adversarial examples.

5 CONCLUSION
In this paper, we have made efforts to generate adversarial ex-
amples for 3D point cloud deep learnings and proposed a self-
organizing and parallel-process driven fast generation method.
Specifically, SOM based feature extraction network is devised to
extract global features and a dual-process based restoration net-
work is constructed with a MLP branch and a convolution branch.
With well-constructed hybrid loss function, these two sub-networks
together can achieve fast but effective generation of adversarial
examples for 3D point clouds. We also conducted benchmark-based
experiments to evaluate the effectiveness of our method, which
can achieve up to 511% faster speed with 34.19% lower resource
usage while ensuring the success rates of attacks. Further more,
our method can obtain better performance in the aspects of trans-
ferability and breaking through on defensive methods.

REFERENCES
[1] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang,

Qi Alfred Chen, Mingyan Liu, and Bo Li. 2021. Invisible for both camera and lidar:
Security of multi-sensor fusion based perception in autonomous driving under
physical-world attacks. In Proc. IEEE Symposium on Security and Privacy(SP).
176–194.

[2] Abdullah Hamdi, Sara Rojas, Ali Thabet, and Bernard Ghanem. 2020. AdvPC:
Transferable adversarial perturbations on 3d point clouds. In Proc. European
Conference on Computer Vision(ECCV). 241–257.

[3] Wei Jiang, Zhiyuan He, Jinyu Zhan, Weijia Pan, and Deepak Adhikari. 2021.
Research Progress and Challenges on Application-Driven Adversarial Examples:
A Survey. ACM Transactions on Cyber-Physical Systems (TCPS) 5, 4 (2021), 1–25.

[4] Loic Landrieu and Mohamed Boussaha. 2019. Point cloud oversegmentation
with graph-structured deep metric learning. In Proc. IEEE conference on computer
vision and pattern recognition(CVPR). 7440–7449.

[5] Loic Landrieu and Martin Simonovsky. 2018. Large-scale point cloud semantic
segmentation with superpoint graphs. In Proc. IEEE conference on computer vision
and pattern recognition(CVPR). 4558–4567.

[6] Jiaxin Li, Ben M Chen, and Gim Hee Lee. 2018. So-net: Self-organizing network
for point cloud analysis. In Proc. IEEE conference on computer vision and pattern
recognition(CVPR). 9397–9406.

[7] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
2018. PointCNN: Convolution on x-transformed points. Proc. Advances in neural
information processing systems(NIPS) (2018), 820–830.

[8] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[9] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. PointNet:
Deep learning on point sets for 3d classification and segmentation. In Proc. IEEE
conference on computer vision and pattern recognition(CVPR). 652–660.

[10] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413 (2017).

[11] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. 2018. Tan-
gent convolutions for dense prediction in 3d. In Proc. IEEE conference on computer
vision and pattern recognition(CVPR). 3887–3896.

[12] Tzungyu Tsai, Kaichen Yang, Tsung-Yi Ho, and Yier Jin. 2020. Robust adversarial
objects against deep learning models. In Proc. AAAI Conference on Artificial
Intelligence(AAAI). 954–962.

[13] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard
Du, Frank Cheng, and Raquel Urtasun. 2020. Physically realizable adversarial
examples for lidar object detection. In Proc. IEEE conference on computer vision
and pattern recognition(CVPR). 13716–13725.

[14] Jiakai Wang, Aishan Liu, Zixin Yin, Shunchang Liu, Shiyu Tang, and Xianglong
Liu. 2021. Dual Attention Suppression Attack: Generate Adversarial Camou-
flage in Physical World. In Proc. IEEE conference on computer vision and pattern
recognition(CVPR).

[15] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. 2018. Sgpn:
Similarity group proposal network for 3d point cloud instance segmentation. In
Proc. IEEE conference on computer vision and pattern recognition(CVPR). 2569–
2578.

[16] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm
Transactions On Graphics (tog) 38, 5 (2019), 1–12.

[17] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volu-
metric shapes. In Proc. IEEE conference on computer vision and pattern recogni-
tion(CVPR). 1912–1920.

[18] Chong Xiang, Charles R Qi, and Bo Li. 2019. Generating 3d adversarial point
clouds. In Proc. IEEE conference on computer vision and pattern recognition(CVPR).
9136–9144.

[19] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song.
2018. Generating adversarial examples with adversarial networks. arXiv preprint
arXiv:1801.02610 (2018).

[20] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and
Alan L Yuille. 2019. Improving transferability of adversarial examples with input
diversity. In Proc. IEEE conference on computer vision and pattern recognition(CVPR).
2730–2739.

[21] Kaichen Yang, Xuan-Yi Lin, Yixin Sun, Tsung-Yi Ho, and Yier Jin. 2021. 3D-
Adv: Black-Box Adversarial Attacks against Deep Learning Models through 3D
Sensors. In Proc. ACM/IEEE Design Automation Conference(DAC). 547–552.

[22] Kaichen Yang, Tzungyu Tsai, Honggang Yu, Max Panoff, Tsung-Yi Ho, and Yier
Jin. 2021. Robust Roadside Physical Adversarial Attack Against Deep Learning
in Lidar Perception Modules. In Proc. ACM Asia Conference on Computer and
Communications Security(AsiaCCS). 349–362.

[23] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng.
2018. PU-NET: Point cloud upsampling network. In Proc. IEEE conference on
computer vision and pattern recognition(CVPR). 2790–2799.

[24] Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang, Wenbo Zhou, and Neng-
hai Yu. 2019. DUP-NET: Denoiser and upsampler network for 3d adversarial
point clouds defense. In Proc. IEEE conference on computer vision and pattern
recognition(CVPR). 1961–1970.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Learning on Point Clouds
	2.2 Adversarial Attacks on Point Clouds
	2.3 Defenses Against Point Cloud Attacks

	3 Approach
	3.1 Self-Organizing Input Preprocessing
	3.2 SOM based Global Feature Extraction
	3.3 Dual-Process based Point Cloud Restoration
	3.4 Hybrid Loss

	4 experiment
	4.1 Attack Transferability
	4.2 Attack performance on defensive methods
	4.3 Speed and Resource Comparison

	5 conclusion
	References

